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A methodological numerical investigation of nonstationary flow of an incompressible viscous fluid around a
circular cylinder has been carried out within the framework of the multiblock approach on a set of intersect-
ing rectangular and cylindrical grids.

1. The problem of nonstationary flow around a cylinder is one of the best known problems, which has long
been used in the practice of testing computational algorithms to solve Navier–Stokes equations. Even in 1964, J.
Fromm [1] demonstrated the calculated Karman vortex street behind a cylinder having a square cross section. It should
be noted that similarly to the numerical modeling of circulation flow of an incompressible fluid in a square cavity
with a mobile cover (see, for example, [2]), the nonstationary Navier–Stokes equations written in transformed variables
vorticity–current function were solved at the initial stage. The use of such a simplified approach is explained by the
economy of computational resources.

Subsequently, in the 1980s, the computational procedures for solution of the nonstationary Navier–Stokes
equations in natural variables velocity components–pressure on monoblock grids were developed (see [3, 4]). In the
1990s, much attention was given to multiblock algorithms and to adaptive and nonstructurized grids [5]. And the
methods of solving the equations on multiblock grids with a component-adaptive interface have found the widest use
in computational practice.

2. One promising trend in the development of the computational hydrodynamics of recent years is the devel-
opment of factorized multiblock algorithms for solving the nonstationary Navier–Stokes equations on the basis of in-
tersecting structurized grids of simple topology. The advantages of the use of such grids lie in the fact that they make
it possible not only to map multiply connected regions of complex geometry on very economical grids with minimum
errors caused by the angularity of the grid lines, but also to markedly improve the quality of numerical solutions by
catching correctly different-scale hydrodynamic features of the flow on the corresponding narrow grids. This is particu-
larly true for the reproduction of boundary and shear layers which are very thin at high Reynolds numbers.

The elements of multiblock computational technologies began to be developed in solving the problems of
laminar stationary flow of a viscous fluid around a circular cylinder [6] and a thick profile [7] for the case where vor-
tex cells are built into the contours of the bodies. The so-called multistage grids which make it possible to resolve the
near-wall layers with a high accuracy and to simultaneously use fairly coarse grids at a large distance from the body
have been tested. In the zones of intersection of the grids, the parameters have been determined using both conserva-
tive and nonconservative (linear) interpolations, and the acceptability of the latter has been shown.

The multiblock computational procedure based on multistage grids has been extended to the case of nonsta-
tionary laminar flow around a circular cylinder [8] and a rounded plane bar [9] containing vortex cells with rotating
central bodies in their structures. It has also been used for analysis of the jet action on the nonstationary near wake in
turbulent flow around a cylinder [10].

An extended description of the factorized multiblock algorithm for calculating nonstationary laminar flows
with flow separation near bodies having a two-dimensional configuration and a detailed mapping of the flow in the
near wake on a special rectangular grid are presented in [11]. The algorithm has been tested in solving the problem
on the initial phase of an abrupt start of a circular cylinder in a wide range of Reynolds numbers. This phase is char-
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acterized by symmetric dynamically developing vortex structures. The aim of the present work is to numerically ana-
lyze the development of the nonstationary wake in the case of two-dimensional laminar flow around a circular cylinder
within the framework of multiblock technologies with the use of grids of various types.

3. The problem of uniform flow of an incompressible viscous fluid around the body considered is solved in
a two-dimensional formulation at a Reynolds number of the undisturbed flow of Re = 150. Selection of this value of
the Reynolds number is explained by the fact that it falls within the range in which the model of two-dimensional
flow is workable. As the comparatively recent investigations (see, for example, [12, 13]) of three-dimensional flow
around a circular cylinder have shown, two-dimensional nonstationary flow exists to Re = 190.

The formulation of the problem is analogous to that presented in [8]. It is assumed that the following condi-
tions are set at the outer boundaries of the computational region which are at a large distance from the contour of the
body: the parameters of the incoming flow (they are used as the characteristic of normalization parameters) at the inlet
boundary are fixed and the boundary conditions at the outlet boundary are soft. The adhesion conditions are fulfilled
on the washed surfaces of the body considered.

Two variants of computational multiblock grids are selected for analysis of flow around a circular cylinder: a
combination of rectangular and cylindrical grids of different scale (Fig. 1a) and a multistage cylindrical grid (Fig. 1b).
The diameter of the cylinder is selected as the linear scale.

The outer rectangular region with dimensions 27 × 20 (Fig. 1a) contains 70 × 60 cells distributed nonuni-
formly in space. The minimum step of the grid in the neighborhood of the body is equal to 0.2. The center of the
circular cylinder is positioned symmetrically relative to the upper and lower boundaries at a distance of 10 from the
front boundary. The circular cylinder is surrounded by two multistage cylindrical grids. The ring grid nearest to the
outer contour of the cylinder has a thickness of 0.2 and a near-wall step of 0.002. It contains 15 × 100 cells. The
outer ring region of thickness 2 is subdivided into 20 × 100 cells. At a distance of 0.8 from the cylinder, there is an
additional rectangular region with dimensions 13.5 × 3 containing 175 × 40 cells. The last-mentioned grid is designed
for catching the features of the flow in the near and far wakes of the circular cylinder.

The methodological investigation of laminar flow around a circular cylinder also involves the calculations of
two-dimensional flow on a two-stage cylindrical grid shown in Fig. 1b. The ring grid of size 0.1 with a step of 0.002
near the surface, which is nearest to the wall of the cylinder, contains 13 × 400 cells, and the outer ring grid of radius
10 has 200 × 400 cells. The radius of the outer grid varies from 10 to 20.

4. A methodological investigation of nonstationary laminar flow around a circular cylinder has been carried
out earlier [8] on a multistage cylindrical grid. In the present work, we compare the results of the calculations of the

Fig. 1. Fragment of a multiblock computational grid consisting of a grid adja-
cent to the circular cylinder, a cylindrical grid around the cylinder, and two
embedded rectangular grids, one of which is designed for description of the
flow in the wake (a) and a two-stage cylindrical grid to calculate nonstationary
laminar flow around a circular cylinder (b).
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integral characteristics of the cylinder on grids of different topology. Special attention is given to the evaluation of the
influence of the radius R1 of the cylindrical region of the grid on the coefficients Cx and Cy of the cylinder. We con-
sider both the self-oscillating and transient portions of the characteristics.

In the self-oscillating regime of flow around a circular cylinder, the topology of the grid has a small influence
on its integral characteristics, especially for the coefficient Cy (Fig. 2). A certain spread is observed in the drag coef-
ficient of the cylinder as a function of the radius of the cylindrical region, and there appears a trend — the larger
R1, the lower the value of Cx. This effect can partially be explained by the blocking of the flow.

The time evolution of the integral characteristics of the circular cylinder from the beginning of motion (or
from the moment of impact) points clearly to the fact that the trajectories Cx(t) and Cy(t) depend on the topology of
the grid. The self-oscillating regime is established somewhat more rapidly on the cylindrical grid. This, probably, is

Fig. 2. Drag coefficients Cx (a) and transverse-force coefficients Cy (b) of the
circular cylinder vs. time t in the self-oscillating regime of flow around it: 1–
3) calculation on cylindrical grids [1) R1 = 10; 2) 15; 3) 20]; 4) calculation on
combined grids.

Fig. 3. Minimum values of the longitudinal velocity component umin (a), static
pressure pmin (b), and Strouhal number Sh (c) in the transient regime of lami-
nar flow and transverse-force coefficient Cy in the self-oscillating regime of
flow (d) vs. time t. Points denote the instants of time for which the patterns in
Fig. 4 are constructed. Curve 1 in Fig. 3c corresponds to the calculated results
and dashed line 2 corresponds to the experimental data [14–17].
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explained by the scale effect, i.e., by the fact that the size of the circular region is smaller than the size of the rec-
tangular region considered. In the first case, the disturbances from the back boundary exert a destabilizing action on
the flow around the cylinder more rapidly. It should be noted that the character of the dependences Cx(t) and Cy(t) is
analogous to the dependences obtained earlier in [8].

An analysis of nonstationary flow around a circular cylinder, carried out on a composite grid, is made in Figs.
3–7.

An analysis of the time dependences of the extreme local parameters of the flow, i.e., the minimum velocity
of the reverse flow in the wake umin (Fig. 3a) and the minimum pressure pmin (Fig. 3b), and of the evolution of the
drag and lift coefficients has revealed several characteristic portions of the behavior of the parameters. Their existence
has been suggested earlier [8].

First of all, we should note the phase of the beginning of the process of formation of nonstationary flow
around a circular cylinder. The "impact" character determines the large initial gradients of all the dependences consid-
ered and the high rate of development of the process. It is of interest to estimate the duration of the phase relative to
the duration of formation of the self-oscillating regime of flow around the cylinder. It was found that it accounts for
about 3% of the indicated time interval. A detailed analysis of the initial phase has been made in [8].

Subsequently, the rate of development of the process decreases. Approximately to the instant t = 45, there is
a region where the minimum velocity in the near wake behind the cylinder changes almost linearly at a practically
constant static pressure. This portion with a duration of about 45% of the time of formation of the self-oscillating re-
gime of the flow is characterized by the absence of the lift (lifting force) and a gradual decrease in the drag coeffi-
cient to its minimum value.

The next stage completing the transient process of formation of the self-oscillating regime of flow around the
cylinder accounts for about 50% of the time of its establishment. This stage is characterized by a gradual decrease in
the minimum pressure in the wake and an increase in the absolute value of the minimum longitudinal velocity. The
oscillations of the above characteristics caused by the transverse oscillation of the flow become quite appreciable. The

Fig. 4. Patterns of the isobars (a–e) and the isotachs of the longitudinal (f–j)
and vertical (k–o) velocity components (step 0.15) in the self-oscillating regime
of flow around the circular cylinder at the instants of time: t = 81.1 (a, f, k),
82.5 (b, g, l), 83.9 (c, h, m), 85.3 (d, i, n), and 86.7 (e, j, o).
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oscillations of the drag and lift coefficients also increase gradually; with increase in the oscillation amplitude the av-
eraged drag of the cylinder also increases.

To determine the interrelation between the evolution of the local and integral characteristics of the flow and
the instantaneous patterns of flow around the cylinder, by points on the dependence Cy(t) (Fig. 3d) we denoted the in-
stants of time (in the self-oscillating regime of flow) for which the patterns of the isobars and isolines of the longitu-
dinal and transverse velocity components are constructed with a step of 0.15 (Fig. 4).

It is usual to analyze separated flow around a circular cylinder using the patterns of vorticity isolines. In the
present work, increased attention is given to the study of synchronous patterns of pressure and velocity fields. Figure
4 shows the patterns in a quarter of the period; consideration begins from the instant corresponding to the minimum
value of the lift coefficient.

As is seen from the isobars presented, the vortices separated alternately from the lower and upper halves of
the cylinder enter successively the flow and move downstream. The centers of the vortices corresponding to the zones
of decreased pressure move along parallel straight lines collinear to the velocity vector of the undisturbed flow, form-
ing the known Karman vortex street. At the instant of vortex separation, the lift coefficient has a maximum value.

Analysis of the patterns of the isolines of the velocity components gives additional information on the genera-
tion of the vortex street. Noteworthy is the dissimilarity of the separated flow near the body from the vortex flow in
the developing wake. As follows from the patterns of the isolines of the longitudinal velocity components, a flow to-
ward the bottom part of the cylinder which is similar to the jet flow is formed in the neighborhood of the body. The
maximum velocity of the reverse flow accounts for about 0.3 of the undisturbed-flow velocity. The jet beating the bot-
tom part of the cylinder is weakly pulsating and shifts alternately up and down relative to its axial line oriented along
the vector of the undisturbed flow. The character of the behavior of the isolines of the transverse velocity components
also points to the fact that the back part of the cylinder is in pulsating alternating transverse flow.

The structure of the flow in the wake behind the cylinder downstream is periodic in longitudinal and trans-
verse velocity components.

Fig. 5. Patterns of the isobars (a–e) and the isotachs of the longitudinal (f–j)
and vertical (k–o) velocity components at the initial period of laminar flow
around the circular cylinder at the instants of time: t = 1 (a, f, k), 5 (b, g, l),
10 (c, h, m), 15 (d, i, n), and 20 (e, j, o).
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Figures 5–7 show the patterns of flow around the cylinder, which correspond to the initial phase and to the
transient process and have been constructed with a time step close to 5. It is apparent that they correspond to the
above-mentioned phases of flow around the cylinder. True enough, the initial phase of flow around the cylinder is in-
terpreted broadly — to the instant t = 20, i.e., to the boundary of existence of the symmetric vortex structure in the
wake behind the cylinder (Fig. 5). Clearly, this period involves a part of the linear portion of the dependence umin(t)
and, what is more important, the nonlinear portion of the dependence pmin(t). The considered phase of flow is distin-
guished by the predominance of the rapid processes of formation of the near wake, which are accompanied by a high
rarefaction and high velocities of the reverse flow. As the length of the separation zone increases, the velocity of cir-
culation flow and the level of flow pressure in it decrease. It is important to note that the length of the zone at the
end of the initial phase is much larger than the diameter of the cylinder.

In the first phase of the transient process, elements of asymmetry appear in the flow as a result of the stabil-
ity loss and the transformation of the vortex structure in the near wake behind the cylinder, which lasts to t = 45 (Fig.
6). The loss in the symmetry of the flow in the wake is the most pronounced in the evolution of the patterns of the
isolines of the transverse velocity components. The wake changes gradually, which is evidenced by the monotonic
character of the dependences umin(t) and pmin(t). Whereas umin(t) behaves linearly, pmin(t) changes very insignificantly.
Such behavior of the local characteristics of the flow is due to the fact that in the time interval considered all the
changes occur at a small distance from the cylinder. It is of interest to note that at the end of the period the vortex
structure in the far wake is topologically similar to the structures of the self-oscillating regime. By this instant the
length of the separation zone in the near wake behind the cylinder also decreases markedly. It should be emphasized
that the fluid motion before the cylinder is still symmetric. As a consequence, the lift coefficient of the cylinder re-
main neglectfully small, i.e., the distributions of the pressure and the friction over its surface differ insignificantly from
symmetric distributions.

The second stage of the transient process (Fig. 7) is characterized by the development of nonstationary flow
around both the front and back halves of the cylinder. Its duration varies from 50 to 80. At this stage of flow, the

Fig. 6. Patterns of the isobars (a–e) and the isotachs of the longitudinal (f–j)
and vertical (k–o) velocity components (step 0.15) in the transient regime (with
asymmetrization) of flow around the circular cylinder at the instants of time: t
= 25 (a, f, k), 30 (b, g, l), 35 (c, h, m), 40 (d, i, n), and 45 (e, j, o).
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cylinder is found in the flow with a variable angle of attack. As a consequence, the integral loads on the body in-
crease, and the rarefaction and the velocity of the reverse flow in the near layer increase.

A comparison of the calculated and experimental values of the Strouhal number, obtained with different com-
putational grids and in experiments on different setups [14–17] in the self-oscillating regime of the flow around the
circular cylinder at Re = 150, has shown that they are in good agreement.

The dependence of the Strouhal number on the time, beginning with the instant of sudden motion of the flow,
correlates with the above-described phases of flow around the cylinder (Fig. 3c). The initial portion is characterized by
an abrupt decrease in Sh, and the initial phase of the symmetric flow and the region of the transient process with ele-
ments of flow asymmetry is characterized by a constant level of Sh. From the second phase of the transient process,
Sh begins to increase gradually to the values obtained in the experiments.

This work was carried out with financial support from the Russian Foundation for Basic Research (project
Nos. 02-02-81035, 02-01-00670, and 02-01-01160).

NOTATION

t, time; R1, distance to the boundary of the computational region; umin and pmin, minimum values of the lon-
gitudinal velocity component and the static pressure; Re and Sh, Reynolds and Strouhal numbers; Cx and Cy, coeffi-
cients of drag and of transverse force.

Fig. 7. Patterns of the isobars (a–e) and the isotachs of the longitudinal (f–j)
and vertical (k–o) velocity components (step 0.15) in the transient regime of
flow around the circular cylinder at the instants of time: t = 50 (a, f, k), 55
(b, g, l), 60 (c, h, m), 65 (d, i, n), and 70 (e, j, o).

TABLE 1. Comparison of the Calculated and Experimental Results on the Strouhal Number for Laminar Flow around the
Circular Cylinder at Re = 150

Literature source Present work [8] [14] [15] [16] [17]

Strouhal number 0.182 0.18 0.182 0.182 0.183 0.185
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